New Methods for Spectral Clustering
نویسندگان
چکیده
Analyzing the affinity matrix spectrum is an increasingly popular data clustering method. We propose three new algorithmic components which are appropriate for improving performance of spectral clustering. First, observing the eigenvectors suggests to use a K-lines algorithm instead of the commonly applied K-means. Second, the clustering works best if the affinity matrix has a clear block structure, which can be achieved by computing a conductivity matrix. Third, many clustering problems are inhomogeneous or asymmetric in the sense that some clusters are concentrated while others are dispersed. In this case, a context-dependent calculation of the affinity matrix helps. This method also turns out to allow a robust automatic determination of the kernel radius σ.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملA New Spectral Clustering Algorithm
We present a new clustering algorithm that is based on searching for natural gaps in the components of the lowest energy eigenvectors of the Laplacian of a graph. In comparing the performance of the proposed method with a set of other popular methods (KMEANS, spectral-KMEANS, and an agglomerative method) in the context of the Lancichinetti-Fortunato-Radicchi (LFR) Benchmark for undirected weigh...
متن کاملSpectral Clustering and Block Models: A Review And A New Algorithm
We focus on spectral clustering of unlabeled graphs and review some results on clustering methods which achieve weak or strong consistent identification in data generated by such models. We also present a new algorithm which appears to perform optimally both theoretically using asymptotic theory and empirically.
متن کاملGeneral Tensor Spectral Co-clustering for Higher-Order Data
Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of m...
متن کاملlVIULTIWAY CUTS AND SPECTRAL CLUSTERING
\eVe look at spectral clustering as optimization. \eVe show that near some special points called perfect, spectral clustering optimizes simultaneously two criteria: a dissimilarity measure that we call the rrmltiway normalized c'ut (lvfNC'I1t) and a cluster coherence measure that we call the gap. The immediate implication from the user's p.o.v is that spectral clustering will optimize any trade...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کامل